
www.umbc.edu 

CMSC201 
 Computer Science I for Majors 

 

Lecture 16 – Classes and Modules 
 

Prof. Katherine Gibson 

Based on slides from the book author, and previous iterations of the course 



www.umbc.edu 

Last Class We Covered 

• Review of Functions 

• Code Design 

–Readability 

–Adaptability 

• Top-Down Design 

• Modular Development 

 
2 



www.umbc.edu 

Any Questions from Last Time? 



www.umbc.edu 

Today’s Objectives 

• To reinforce what exactly it means to write  
“good quality” code 

• To learn more about importing 

• To better understand the usefulness of modules 

• To learn what a class is, and its various parts 

– To cover vocabulary related to classes 

– To be able to create instances of a class 

4 



www.umbc.edu 

“Good Code” 

• If you were to ask a dozen programmers what 
it means to write good code, you would get a 
different answer from each 

 

• What are some characteristics that we have 
discussed that help you write “good code?” 

 

5 



www.umbc.edu 

8 Characteristics of Good Code 

1. Readability 

– As we previously discussed, writing code that is 
easy to understand what it is doing 

2. Adaptability (or Extensibility) 

– Relates to how easy it is to change conditions or 
add features or functionality to the code 

3. Efficiency 

– Clean code is fast code 

 6 
From: http://www.codeexcellence.com/2012/05/8-must-have-characteristics-for-writing-quality-code/ 



www.umbc.edu 

8 Characteristics of Good Code 

4. Maintainability 

– Write it for other people to read! 

5. Well Structured 

– How well do the different parts of the code work 
together?  Is there a clear flow to the program? 

6. Reliability 

– Code is stable and causes little downtime 

7 
From: http://www.codeexcellence.com/2012/05/8-must-have-characteristics-for-writing-quality-code/ 



www.umbc.edu 

8 Characteristics of Good Code 

7. Follows Standards 

– Code follows a set of guidelines, rules and 
regulations that are set by the organization 

8. Regarded by Peers 

– Good programmers know good code 

– You know you are doing a good programming job 
when your peers have good things to say about 
your code and prefer to copy and paste from your 
programs 

8 
From: http://www.codeexcellence.com/2012/05/8-must-have-characteristics-for-writing-quality-code/ 



www.umbc.edu 

Importing and Modules 



www.umbc.edu 

Reusing Code 

• If we take the time to write a good function, 
we might want to reuse it later! 

 

• It should have the characteristics of good code 

– Clear, efficient, well-commented, and reliable 

– Should be extensively tested to ensure that it 
performs exactly as we want it to 

– Reusing bad code causes problems in new places! 

 
10 



www.umbc.edu 

Modules 

• A module is a Python file that contains 
definitions (of functions) and other statements 

– Named just like a regular Python file: 

  myModule.py 

 

• Modules allow us to easily reuse parts of our 
code that may be generally useful 

– Functions like isPrime(num) or 
getValidInput(min, max) 

 
11 



www.umbc.edu 

Importing Modules 

• To use a module, we must first import it 
 

• There are three different ways of importing: 
 import somefile 

 from   somefile import * 

 from   somefile import className 

• The difference is what gets imported from the 
file and what name refers to it after importing 

 

 
12 



www.umbc.edu 

import 

• In Lab 9, when we practiced using pdb (Python 
debugger), we used the import command 

 import pdb 

 

• This command imports the entire  pdb.py file 

– Every single thing in the file is now available 

– This includes functions, classes, constants, etc. 

 
13 



www.umbc.edu 

import 

• To use the things we’ve imported this way, we 
need to append the filename and a period to 
the front of its name (“myModule.”) 

 

• To access a function called myFunction: 

 myModule.myFunction(34) 

• To access a class method: 

 myModule.myClass.classMethod() 

 
14 



www.umbc.edu 

from someFile import * 

• Again, everything in the file someFile.py 
gets imported (we gain access to it) 

– The star (*) means we import every single 
thing from someFile.py 

 

• Be careful! 

– Using this import command can easily 
overwrite an existing function or variable 

 
 

15 



www.umbc.edu 

from someFile import * 

• When we use this import, if we want to refer  
to anything, we can just use its name 

 

• We no longer need to use “someFile.”  
in front of the things we want to access 

 myFunction(34) 

 myClass.classMethod() 

• These things are now in the current namespace 

16 



www.umbc.edu 

from someFile import X 

• Only the item X in someFile.py is 
imported 

 

• After importing X, you can refer to it by using 
just its name (it’s in the current namespace) 

• But again, be careful! 

– This would overwrite anything already defined in 
the current namespace that is also called X 

17 



www.umbc.edu 

from someFile import X 

from myModule import myClass 

• We have imported this class and its methods 
 myClass.classMethod() 

• But not the other things in myModule.py 

 myFunction(34) (not imported) 
 

• We can import multiple things using commas: 

 from myModule import thing1, thing2 

 
18 



www.umbc.edu 

Where to Import From? 

• Where does Python look for module files? 

– In the current directory 

– In a list of pre-defined directories 
 

• The list of directories where Python will look 
for files to be imported is called sys.path 

– To add a directory to this list, append it 

 sys.path.append('/my/new/path') 

 

 

 

19 



www.umbc.edu 

The sys.path Variable 

• The “path” variable is stored inside the 
“sys” module (the “system” module) 

• We can see what it contains like so: 
>>> import sys 

>>> sys.path 

 

 

['', '/opt/rh/python33/root/usr/lib64/python33.zip', 

'/opt/rh/python33/root/usr/lib64/python3.3', 

'/opt/rh/python33/root/usr/lib64/python3.3/plat-linux', 

'/opt/rh/python33/root/usr/lib64/python3.3/lib-dynload', 

'/opt/rh/python33/root/usr/lib64/python3.3/site-packages', 

'/opt/rh/python33/root/usr/lib/python3.3/site-packages'] 

 
20 

this means to look in the current directory 



www.umbc.edu 

Object Oriented Programming: 
Defining Classes 



www.umbc.edu 

Classes 

• A class is a special data type which defines 
how to build a certain kind of object. 

• The class also stores some data items that are 
shared by all the instances of this class 

• Classes are blueprints for something 

• Instances are objects that are created which 
follow the definition given inside of the class 



www.umbc.edu 

Classes 

• In general, classes contain two things: 

 

1. Attributes of an object (data members) 

• Usually variables describing the thing 

2. Things that the object can do (methods) 

• Usually functions describing the action 



www.umbc.edu 

Class Parts 

• Data member: A class variable or instance 
variable that holds data associated with a 
class and its objects. 

• Method: A special kind of function that is 
defined in a class definition. 



www.umbc.edu 

Instances of a Class 

• Object: A unique instance of a data structure 
that's defined by its class. An object comprises 
both data members (class variables and 
instance variables) and methods. 



www.umbc.edu 

Class Description 

• If a class describes a thing, we can think about 
it in terms of English 

– Object -> Noun 

– Attribute -> Adjective 

– Method (Function) -> Verb 



www.umbc.edu 

Class Example 

class Dog: 

 

    def __init__(self, name): 

        self.name = name 

        self.tricks = []    # creates a new empty list for each dog 

 

    def add_trick(self, trick): 

        self.tricks.append(trick) 

 

>>> d = Dog('Fido') 

>>> e = Dog('Buddy') 

>>> d.add_trick('roll over') 

>>> e.add_trick('play dead') 

>>> d.tricks 

['roll over'] 

>>> e.tricks 

['play dead'] 

From: https://docs.python.org/2/tutorial/classes.html 

Class to build 
dogs 

Characteristic 
of dog 

Method (function) to 
add tricks 

Creating a new dog  
named ‘Fido’ 



www.umbc.edu 

Class Example 

class Dog: 

 

    def __init__(self, name): 

        self.name = name 

        self.tricks = []    # creates a new empty list for each dog 

 

    def add_trick(self, trick): 

        self.tricks.append(trick) 

 

>>> d = Dog('Fido') 

>>> e = Dog('Buddy') 

>>> d.add_trick('roll over') 

>>> e.add_trick('play dead') 

>>> d.tricks 

['roll over'] 

>>> e.tricks 

['play dead'] 

From: https://docs.python.org/2/tutorial/classes.html 

Creates an instance 
of dog (called an 

object) 

Refer to Fido as “d” 
from then on 

Add a trick to Fido 
called ‘roll over’ 



www.umbc.edu 

Defining a Class 

• Instances are objects that are created which 
follow the definition given inside of the class 

• Python doesn’t use separate class interface 
definitions as in some languages 

• You just define the class and then use it 

 



www.umbc.edu 

Everything an Object? 

• Everything in Python is really an object. 

– We’ve seen hints of this already… 
“hello”.upper() 

list3.append(‘a’) 

– New object classes can easily be defined in 
addition to these built-in data-types. 

• In fact, programming in Python is typically done in an  
object-oriented fashion. 



www.umbc.edu 

Methods in Classes 

• Define a method in a class by including function 
definitions within the scope of the class block 

• There must be a special first argument self in all of 
method definitions which gets bound to the calling 
instance 

• There is also usually a special method called 
__init__ in most classes 

• We’ll talk about both later… 



www.umbc.edu 

Class Example student 

class student: 

    def __init__(self, n, a): 

        self.full_name = n 

        self.age = a 

    def get_age(self): 

        return self.age 

 



www.umbc.edu 

Using Class Student 

def main(): 

    a = student("John", 19) 

    print(a.full_name) 

    print(a.get_age()) 

main() 

 bash-4.1$ python class_student.py 

John 

19 

bash-4.1$ 

Create new student object (a) 
with name “John”, age 19 

Print an attribute of 
the student 

Call a method of 
student 

Output 



www.umbc.edu 

Any Other Questions? 



www.umbc.edu 

Announcements 

• Midterm Survey (on Blackboard) 

– Due by Friday, November 6th at 8:59:59 PM 
 

• Project 1 is out 

– Due by Tuesday, November 17th at 8:59:59 PM 

– Do NOT procrastinate! 
 

• Next Class: Objects Continued 

35 


