CMSC201
Computer Science | for Majors

Lecture 16 — Classes and Modules

Based on slides from the book author, and previous iterations of the course www.umbc.edu

Last Class We Covered

Review of Functions

Code Design

— Readability

— Adaptability
Top-Down Design
Modular Development

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

* To reinforce what exactly it means to write
“good quality” code

* To learn more about importing
e To better understand the usefulness of modules

* To learn what a class is, and its various parts
—To cover vocabulary related to classes
—To be able to create instances of a class

www.umbc.edu

“Good Code”

* |f you were to ask a dozen programmers what
it means to write good code, you would get a
different answer from each

 What are some characteristics that we have
discussed that help you write “good code?”

5 www.umbc.edu

8 Characteristics of Good Code

1. Readability

— As we previously discussed, writing code that is
easy to understand what it is doing

2. Adaptability (or Extensibility)

— Relates to how easy it is to change conditions or
add features or functionality to the code

3. Efficiency
— Clean code is fast code

From:Qctp://www.codeexcelIence.com/2012/05/8—must-have-characteristics-for—writing-quality-code/ www.umbc.edu

8 Characteristics of Good Code

4. Maintainability

— Write it for other people to read!
5. Well Structured

— How well do the different parts of the code work
together? Is there a clear flow to the program?

6. Reliability
— Code is stable and causes little downtime

From:thp://www.codeexcelIence.com/2012/05/8—must-have-characteristics-for—writing-quality-code/ www.umbc.edu

8 Characteristics of Good Code

7. Follows Standards

— Code follows a set of guidelines, rules and
regulations that are set by the organization

8. Regarded by Peers
— Good programmers know good code

— You know you are doing a good programming job
when your peers have good things to say about
your code and prefer to copy and paste from your
programs

From:ﬁctp://www.codeexcelIence.com/2012/05/8—must-have-characteristics-for—writing-quality-code/ www.umbc.edu

Importing and Modules

www.umbc.edu

Reusing Code

* |f we take the time to write a good function,
we might want to reuse it later!

* |t should have the characteristics of good code
— Clear, efficient, well-commented, and reliable

— Should be extensively tested to ensure that it
performs exactly as we want it to

— Reusing bad code causes problems in new places!

10

www.umbc.edu

Modules

A module is a Python file that contains
definitions (of functions) and other statements
— Named just like a regular Python file:
myModule.py

 Modules allow us to easily reuse parts of our
code that may be generally useful

— Functions like isPrime (num) or

getValidInput (min, max)
11

www.umbc.edu

Importing Modules

* To use a module, we must first import it

 There are three different ways of importing:
import somefile
from somefile import *

from somefile import className

* The difference is what gets imported from the
file and what name refers to it after importing

12

www.umbc.edu

import

* |In Lab 9, when we practiced using pdb (Python
debugger), we used the import command

import pdb

* This command imports the entire pdb . py file

— Every single thing in the file is now available
— This includes functions, classes, constants, etc.

13

www.umbc.edu

import

* To use the things we’ve imported this way, we

need to append the filename and a period to
the front of its name (“myModule.”)

* To access a function called myFunction:
myModule.myFunction (34)

e To access a class method:
myModule.myClass.classMethod()

14

www.umbc.edu

from someFile import *

* Again, everything in the file someFile.py
gets imported (we gain access to it)

—The star (*) means we import every single
thing from someFile.py

e Be careful!

— Using this import command can easily
overwrite an existing function or variable

15

www.umbc.edu

from someFile import *

* When we use this import, if we want to refer
to anything, we can just use its name

* We no longer need to use “someFile.”
in front of the things we want to access
myFunction (34)
myClass.classMethod()

* These things are now in the current namespace

16

www.umbc.edu

from someFile import X

* Only theitem Xin someFile.py is
imported

e After importing X, you can refer to it by using
just its name (it’s in the current namespace)

e But again, be careful!

— This would overwrite anything already defined in
the current namespace that is also called X

17 www.umbc.edu

from someFile import X

from myModule import myClass

* We have imported this class and its methods
myClass.classMethod()

* But not the other things in myModule.py
myFunction (34) (notimported)

* We can import multiple things using commas:
from myModule import thingl, thing2

18

www.umbc.edu

Where to Import From?

* Where does Python look for module files?
— In the current directory
— In a list of pre-defined directories

* The list of directories where Python will look
for files to be imported is called sys .path

— To add a directory to this list, append it
sys.path.append('/my/new/path’')

19

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

The sys .path Variable

* The “path” variable is stored inside the
“sys” module (the “system” module)

e \WWe can see what it contains like so:
>>> import sys
>>> sys.path

this means to look in the current directory

@ '/opt/rh/python33/root/usr/1lib64/python33.zip’,
opt/rh/python33/root/usr/1ib64/python3.3"',
'/opt/rh/python33/root/usr/1lib64/python3.3/plat-linux’,
'/opt/rh/python33/root/usr/1ib64/python3.3/1ib-dynload’,
'/opt/rh/python33/root/usr/1ib64/python3.3/site-packages’,
'/opt/rh/python33/root/usr/lib/python3.3/site-packages']

www.umbc.edu

20

Object Oriented Programming:
Defining Classes

www.umbc.edu

Classes

A class is a special data type which defines
how to build a certain kind of object.

The class also stores some data items that are
shared by all the instances of this class

Classes are blueprints for something

Instances are objects that are created which
follow the definition given inside of the class

www.umbc.edu

Classes

* |n general, classes contain two things:

1. Attributes of an object (data members)
* Usually variables describing the thing

2. Things that the object can do (methods)

e Usually functions describing the action

www.umbc.edu

Class Parts

e Data member: A class variable or instance
variable that holds data associated with a
class and its objects.

 Method: A special kind of function that is
defined in a class definition.

www.umbc.edu

Instances of a Class

* Object: A uniqgue instance of a data structure
that's defined by its class. An object comprises
both data members (class variables and
instance variables) and methods.

www.umbc.edu

Class Description

* |f a class describes a thing, we can think about
it in terms of English

— Object -> Noun
— Attribute -> Adjective
— Method (Function) -> Verb

www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Class to build
dogs

Class Example
— P

class Dog: Cha raCter|St|C

def init (self, name/ Of dog

self.name = name

self.tricks = [] # creates a new empty list for each dog

def add_trick(self, trick): _ Method (functlon) tO
self. tricks.append (trick)]
add tricks

>>>
>>>

= Dog('Fido')
= Dog('Buddy')
>>> d.add_trick('roll over')

>>> e.add trick('play dead') Creating a new dog
>>> d.tricks ire- ’
named ‘Fido

['roll over']
>>> e.tricks
['play dead']

o QA 0 QA

From: https://docs.python.org/2/tutorial/classes.html www.umbc.edu

AN HONORS UNIVERSITY IN MARYLAND

Class Example

class Dog:

def init (self, name):
self.name = name
self.tricks = [] # creates a new empty list for each dog
def add trick(self, trick): Creates an InStance
self.tricks.append (trick) Of dog (Ca”ed an
>>> d = Dog('Fido') object)
>>> e = Dog('Buddy')
>>> d.add trick('roll over') g . o yn
>>> e.add trick('play dead') Refer to Fldo as d
>>> d.tricks from then on
['roll over']
>>> e.tricks c c
['play dead'] Add a trick to Fido
called ‘roll over’

From: https://docs.python.org/2/tutorial/classes.html www.umbc.edu

Defining a Class

* |[nstances are objects that are created which
follow the definition given inside of the class

* Python doesn’t use separate class interface
definitions as in some languages

* You just define the class and then use it

www.umbc.edu

Everything an Object?

* Everything in Python is really an object.

— We've seen hints of this already...
“hello” .upper ()
list3.append(‘a’)

— New object classes can easily be defined in
addition to these built-in data-types.

* In fact, programming in Python is typically done in an
object-oriented fashion.

www.umbc.edu

Methods in Classes

Define a method in a class by including function
definitions within the scope of the class block

There must be a special first argument sel fin all of
method definitions which gets bound to the calling
instance

There is also usually a special method called
init in most classes

We’'ll talk about both later...

www.umbc.edu

Class Example student

class student

def 1init (self, n, a):

self.full name = n
self.age = a
def get age(self):

return self.age

www.umbc.edu

Using Class Student

Create new student object (a)

def main () / with name “John”, age 19

a = student("John", 19)

print (a.full name) .

Print an attribute of
the student

print(a.get _age()) .

main ()

Call a method of
student

bash-4.1$ python class student.py

John

Output =
bash-4.1%

www.umbc.edu

Any Other Questions?

www.umbc.edu

Announcements

 Midterm Survey (on Blackboard)
— Due by Friday, November 6th at 8:59:59 PM

* Project1is out
— Due by Tuesday, November 17th at 8:59:59 PM
— Do NOT procrastinate!

* Next Class: Objects Continued

35

www.umbc.edu

